
THE PYPY SANDBOX
Using the PyPy Sandbox to Explore Mobile Code 

Sandboxing



Seth James Nielson

■ B.S./M.S. Computer Science from Brigham Young University

■ Ph.D. Computer Science from Rice University

■ Past Experience: Software Engineer, Security Analyst

■ Director of Advanced Research Projects at 

The Johns Hopkins University Information Security Institute

■ Founder, Chief Scientist, Crimson Vista Inc.



The PyPy Sandbox
(An Introduction)

■ The PyPy Project

– Replacement for Cpython

– Faster execution of most Python code

– Current versions: 2.7.13 and 3.5.3

■ The PyPy Sandbox is a Secondary Feature

– Execution of untrusted Python scripts



The Problem with Computers

■ Computer processors do exactly what they’re told

■ They have no ability to decide if they should do what they’re told

■ What if they’re told to do something harmful?

■ A lot of technology goes into figuring out what should be done

– Operating System

– Anti-virus

– Device permissions



A Sandbox: 

■ The concept of a sandbox is an environment where destruction doesn’t matter

■ In practice, it is an interceptor between applications and the OS

■ The interception layer enables:

– Policy Enforcement

– “Sensor” Translations

– “Command” Translations



Untrusted

Application

Operating System

Services

(Network, Filesystem, etc)

SANDBOX



Policy Enforcement

■ Most common use of a Sandbox

■ Each incoming request to the operating system, and response, can be inspected

– Requests and responses can be allowed, denied, or modified

– Policy based on request/response type, parameters, state of the system, etc

– Examples:

■ Network Access (Deny, Same-Origin Policy)

■ File Access (Read Only, Write-to-Temp)

■ Even memory allocations



Sensor/Command Translations

■ Policy is not just about allow/deny but rewrite/modify

■ Any risky call (e.g., syscall) can be rewritten with safer parameter

– (Or a risky call could be re-written to a safer call with similar semantics)

■ But a sometimes overlooked Sandbox capability is lightweight virtualization

– I like to call this “Sensor” translations

– The Sandbox can control what the application “sees”

– For example, it can present a virtual filesystem

– Or provide alternative API replacements that are more secure



Untrusted

Application

Operating System

Services

(Network, Filesystem, etc)

SANDBOX

Virtual Filesystem

On-disk Filesystem



The PyPy Sandbox

■ Creates a limited PyPy Interpreter

– No direct calls to the OS (system calls, etc)

– Does not allow dynamic libraries, including compiled Python modules

■ Instead, a controlling process receives OS calls marshalled over a pipe

– This process provides the sandboxing and enforces security policies

– For permitted calls, it performs the call itself and sends back the result

– Or, it can modify the request and/or results



Controlling Process 

(Sandbox)

Operating System

Services

(Network, Filesystem, etc)

PyPy Sandbox 

Interpreter

Untrusted Python 

Script

(optional)



Infinite Variety of Sandboxes

■ Different controlling processes create different kinds of sandboxes

■ Controlling process does not have to be Python

■ The PyPy project provides a default controlling process called “pypy_interact.py”

– Can run a python “shell” or execute a script

– Many OS subsystems completely disabled including network operations

– Read only virtual file system

■ /bin – virtual bin directory with pypy and a few required directories

■ /tmp – temp directory that potentially maps to a real directory

■ NOTE: the interpreter lives in the sandbox and executes the script from virtual /tmp!





Running an Untrusted Script

■ Contents of “dangerous_script.py”

import os

print("Script Current Working Dir: {}".format(os.getcwd()))

print("Contents of root dir: {}".format(os.listdir('/')))

print("Try to delete /tmp dir with a system call.")

os.system('rm -rf /tmp')





Sample Sandboxing Functions



Using PyPy in the Classroom

■ Network Security at Johns Hopkins University

■ Student Labwork:

– Uses “Playground,” an education overlay network created by the Author

– Students create their own version of TCP within Playground

– Students create their own version of TLS within Playground

– Students build mobile code applications on top of Playground using PyPy

■ Parallel processing (e.g., Traveling Salesman)

■ Adapt pypy_interact to support new features (writing to filesystem)



Modifying pypy_interact

■ Requires students to carefully think about sandbox policies and features

■ For example, implementing write

– Requires students to understand virtual file system

– Implement policy for when writes are allowed

■ Specific directories

■ Maximum size

– Argument sanitation (e.g., “../../..” doesn’t escape the sandbox)

■ Another example: implementing network operations



Developing Bot Brains

■ Advanced Network Security

■ “CyberWar_EDU” project

– Gameboard with semi-autonomous “bots”

– Students can (re-)program the bots with a Python brain script

– Each brain scripts run inside a PyPy sandbox instance

– Each brain needs to connect to

■ The Game Board (over TCP)

■ The Student’s command and control server (over Playground’s network)





Sandbox “Brain” Extensions

■ Extended pypy_interact.py to brain_interact.py

■ Virtual file system supports two special virtual files:

– “game://” which opens a socket to the gameboard

– “<playground-protocol>://<host>:<port>” which connects to C&C

■ Allows writing within the /tmp directory so students can re-program their brains!



Sample Modified Sandbox Functions



The “Null” Brain



Eventual Goal for Lab Work

■ Students reprogram bots over the network

■ Students attempt to reprogram other student bots to take them over

■ Eventually, want a student sandbox within the bot sandbox

– Bot sandbox is to protect the game from student malicious code

– Student sandbox is to protect bot against false reprogramming

– Give students a chance to create “firmware” that detects bad “software”



Quick Review

■ PyPy sandbox

– Provides lightweight Python sandboxing

– A modified interpreter has no system calls

– Dangerous calls are processed by a controlling process

– Policy enforces allow, deny, and modify

– Modify can be used to create a virtual system

■ Students can experiment extensively and gain insight into mobile code execution



Final Notes

■ PyPy sandbox is a prototype. It is not ready for production code

■ The current PyPy sandbox is somewhat broken for 2.7, inoperable for 3.5

■ For my class, I fixed 3.5. I plan to submit my changes to PyPy shortly

■ I have discussed providing on-going maintenance with the PyPy team



Thank You!

■ Feel free to ask questions!

■ Links:

– The PyPy project: http://pypy.org

– Playground code: https://github.com/CrimsonVista/Playground3

– CyberWar EDU code: https://github.com/CrimsonVista/cybersecurity-war

– Playground paper: https://eric.ed.gov/?id=EJ1132824

– JHUISI: https://isi.jhu.edu/

http://pypy.org/
https://github.com/CrimsonVista/Playground3
https://github.com/CrimsonVista/cybersecurity-war
https://eric.ed.gov/?id=EJ1132824
https://isi.jhu.edu/

