Under the Hood of the Quantum Computer

Bruce Harmon, PhD
Bruce.Harmon@du.edu 6 October 2021

Speaker

- Seventeen years with Hewlett Packard

- Software/hardware/firmware/chip design, embedded systems design
- Microprocessor and ASIC emulation R\&D leadership
- Three with Synopsys, top EDA supplier
- Tools for chip design
- Three more with Rudolph and KLA-Tencor, top suppliers in semiconductor wafer inspection
- Rudolph for broadband visual macro inspection of individual die
- K-T for UV-laser dark field inspection of wafers
- University dean for computer science at Colorado Tech
- Doctoral student did his dissertation on quantum computing
- Professor and program director for cybersecurity and data science at the University of Denver
- Masters student doing independent research on quantum computing

Outline of the Talk

- Background and motivation of the talk
- What is quantum computing
- Quantum computing history
- Recent developments
- Quantum computing under the hood
- Implications to cyber security (cryptanalysis)
- Mitigation

Background and Motivation

- A quantum computer, if it existed, would seriously threaten RSA encryption. This is via Peter Shor's algorithm
- Research has been under way since 1980s
- Photon polarization and/or electron spin could enable
- Several companies claim to have on:
- Hence the urgency

What's the Fuss: D-Wave, USC/LMC, NASA/Google

- 2011 D-Wave Systems made a chip-set and system: 128 qubit, to be homed at USC Lockheed Martin Quantum Computing Ctr
- Much criticized by academics; later published in Nature
- 2013 Google to form Quantum AI Lab at NASA Ames: 512 qubit sys from D-Wave

History of Quantum Computing

- Quantum mechanics since early $20^{\text {th }}$ Century: Einstein, Bohr, Planck, Dirac, Heisenberg, Schrodinger (remember the cat), et al
- One cannot know both the position and the momentum of a particle (Heisenberg)
- A photon can be in two places at once
- Digital computing since WW II era
- Quantum computing conceived in 1980s
- Yuri Manin (1980), Richard Feynman (1982)
- David Deutsch (1985)
- Peter Shor (1994)

From Quantum Mechanics

- Discrete (from the latin quanta)
- "we cannot know the precise position and momentum of a quantum particle at the same time"
- Superposition
- Heisenberg's Principle (uncertainty)
- Schrodinger's cat, for example
- One cannot know the state without testing
- Thus invalidating or interfering
- Results in a "collapse" to the measured state
- Entanglement: One knows only the aggregate; the individual properties are not known: "spooky action at a distance" -Einstein

Two-slit experiment; the cat

- Even single photon emission produces wave constructive and destructive interference
- Schrodinger's cat is both alive and dead!?

Applications

- Finding factors of large composite integers
- Al and machine learning
- Computational chemistry, biology
- Drug design
- Weather forecasting
- Optimization
- Financial modeling

QC makes it to the

[^0]
Quantum supremacy in 2019?

- Hello quantum world! Google publishes landmark quantum supremacy claim (nature.com)

Variations

- Quantum circuit model (most often used)
- Quantum Turing machine
- Adiabatic quantum computer
- One-way quantum computer

Exploitation

- If the details may be hidden by "entanglement", we may exploit that
- In a manner similar to how the discrete (fast) Fourier Transform is able to exploit properties of the interplay between complex numbers and the periodicity of the exponential function
- Superposition
- The lack of detailed knowledge of the system may enable fast computation
- Measurement alters the system, and that can be exploited to detect eavesdropping

Under the hood

- Notation will be Dirac from Mermin
- Cbit, Qbit, |0>, |1>, | $\phi>$
- Qbit is superposition as follows

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle=\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right]
$$

$\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}=1, \alpha_{i}$ complex numbers

- One Qbit demands 2-vector space
- Two Qbit demands 4-vector space
- $\left|\alpha_{0}\right|^{2}$ is probability assoc. with |0>

Cbits are Qbits, too

$$
|0\rangle=\left[\begin{array}{c}
1+0 i \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
|1\rangle=\left[\begin{array}{c}
0 \\
1+0 i
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Issues

- Noise
- Decoherence
- Error correction
- Extreme cold required
- Multiple runs of the same program

Programming it

- List of QC simulators \mid Quantiki
- Quantum compiler with libraries
- C++, Python, Java, several others
- Simulate on a classical computer
- Assembly language metaphor
- Analogy to signal flow graphs or digital logic circuits
- Brilliant.com has a course in programming QC

QC programming is open source

- Cambridge Quantum makes TKET SDK open source (msn.com)

More on Qbits

- Computation basis (bases)
- $\mid 0>$ is $\binom{1}{0}, \mid 1>$ is $\binom{0}{1}$

- We use orthonormal set of vectors for bases
- 2-Qbit uses 4-vector spaces

$$
\begin{aligned}
& \text { aces } \\
& \left.|\psi\rangle=\alpha_{0}|0|+\alpha_{1}|0|+\alpha_{2} \mid 10\right)+\alpha_{3}|1|=\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{2}
\end{array}\right] .
\end{aligned}
$$

- Generally one uses only 1 \& 2-Qbits
- "A vector space of 2 or 4 dimensions over the complex numbers"

Architecture

- Input register of Qbits
- Output register of Qbits
- Logic in between is formed from Qbits
- Logic blocks are restricted to reversible, unitary transformations, designed to exploit properties
- Measurement blocks are irreversible and are used to get final answer only
- Final answer is a "collapse" based on probability

Clarifications

- Note matrix notation for transformations
- Reversible means the inputs can be determined by putting the outputs through the same transformation in reverse
- A unitary matrix as a transformation means that the inner product of the vector is preserved. The conjugate transpose equals the inverse.

Very brief review of linear algebra

- A square matrix can transform a column vector
- $y=A$ * x
- Such matrices can be cascaded
- $y=C$ * * * * x
- Such a matrix is orthogonal if the L2 norm of each row and column is 1
- For example [[cos(theta), -sin(theta)],
- [sin(theta), $\cos ($ theta $)]]$ will rotate the vector by theta

Operators

- Exclusive OR
- Inner product
- Complex conjugation
- Linear, reversible, unitary transformations via matrices
- Matrix multiplication

Common logic blocks

- \mathbf{X}, NOT, negates, uses $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $C_{i, j}$, controlled NOT, if $\mathrm{i}==1$ it negates, else no-op
- S, swap operator
- \mathbf{Z}, uses $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- H, Hadamard, uses $\frac{1}{\sqrt{2}}(\boldsymbol{X}+\boldsymbol{Z})$
- \mathbf{M}, measurement, not reversible

Single-qubit quantum gates

- Hadamard $\mathrm{H}=\frac{1}{\sqrt{2}}\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|$
- $\operatorname{Not} X=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|$
- $Z=\left|\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right|$
- |dentity $\mathrm{I}=\mathrm{HH}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|$

Methodology

- Input and output "kets" of qubits
- Signal flow diagrams
- $2^{\wedge} \mathrm{n}=$ size of the alpha vector

Peter Shor's Algorithm

- Used to determine the period r associated with RSA, $N=p q, b(x+r)=b(x)$
- That, along with public key N, is enough to enable the tractable determination of the private key pq, which then breaks RSA
- Uses the quantum Fourier Transform, a quantum variant of the DFT/FFT
- Plus numerous number theory tricks
- Polynomial time vs. exponential time

Polynomial vs. exponential time

n

10
 100 1.00E+06
 1000 1.00E+09
 10000
 $1.00 \mathrm{E}+12$
 $1.00 \mathrm{E}+10$
 $1.00 \mathrm{E}+100$
 1E+1000
 $1 \mathrm{E}+10000$
 $10^{\wedge} n$

RSA

- Bob wants to receive from Alice; he knows $N=p q$ and passes her only N and $c ; c d=1 \bmod$ ($p-1$) $(q-1)$
- Alice sends encoded $m s g b=a^{c} \bmod (N)$ which Bob can decode
$-\mathrm{a}=b^{d} \bmod (\mathrm{~N})$
- Eve can only intercept and decode if she knows p or q

More Shor

- But if one could find the period r of the encoded msg b, one could directly decode b
- Roadmap: Use Shor to get r then use classical computer to find d to decode b

Quantum Fourier Transform

- $\boldsymbol{U}_{F T}=$
$\boldsymbol{H}_{3}\left(\boldsymbol{V}_{32} \boldsymbol{H}_{2}\right)\left(\boldsymbol{V}_{31} \boldsymbol{V}_{21} \boldsymbol{H}_{1}\right)\left(V_{30} V_{20} \boldsymbol{V}_{10} \boldsymbol{H}_{0}\right) \boldsymbol{P}$
- Where \mathbf{P} permutes the basis and
- $\boldsymbol{V}_{i, j}=\exp \left(i \pi \boldsymbol{n}_{i} \boldsymbol{n}_{j} / 2^{|i-j|}\right)$
- \boldsymbol{n}_{i} is projection onto state i

More Shor

- $\boldsymbol{U}_{F T}$ is then applied to input register
- The output register is all we need from the quantum computer
- Number theory trick applied on conventional computer to get period r and then d
- Conventional computer then decodes b

Shor's

Mermin on Shor's

- Wayback Machine (archive.org)

D-Wave and IBM

- http://www.networkworld.com/news/2011/092611-quantum-computing-
250825.html?source=NWWNLE nlt daily am 2011-09-26
- IMHO: It is a good start but far from what would be needed for Shor's
- http://www.networkworld.com/community/blog/ibm-scientists-discuss-quantum-computingbreakthrough?source=NWWNLE nlt daily am 2012-02-28
- IBM's Experimental Quantum Computing Lab approach described above

Mitigation?

- NIST is running a competition for it
- Post-Quantum Cryptography ل CSRC (nist.gov)
- Post-Quantum Cryptography | CSRC (nist.gov)
- Quantum key distribution (QKD)
- Polarized photons are used
- Post-quantum cryptography
- True randomness via quantum mechanics
- [2106.06640] Quantum-resistance in blockchain networks (arxiv.org)

References

- Mermin, N. David (2007). Quantum Computer Science An Introduction. Cambridge University Press.
- Purkeypile, M. D. (2009). COVE: A practical quantum computer programming framework. Dissertation for Colorado Technical University. (UMI\#3391574)
- Cornell University Library articles on quantum physics, http://arxiv.org/archive/quant-ph
- http://en.wikipedia.org/wiki/Quantum mechanics
- http://en.wikipedia.org/wiki/Quantum computer
- http://www.dwavesys.com/en/dw homepage.html
- http://www.networkworld.com/news/2011/092611-quantum-computing250825.html?source=NWWNLE nlt daily am 2011-09-26
- http://www.networkworld.com/community/blog/ibm-scientists-discuss-quantum-computingbreakthrough?source=NWWNLE nlt daily am 2012-02-28

Thanks to grad students

- Matt Purkeypile
- Daniel Hars

Contact Info

- Bruce.Harmon@du.edu
- 303-871-6949

[^0]: Source: Gartner (August 2021)
 747576

