

Apache Metron and Apache Spot – big data tools for cybersecurity

Presenter: Dr. Alex Rudniy from Fairleigh Dickinson University

About the Project

- Cybersecurity Workforce Education CNAP Initiatives
- NSA Grant No. H98230-17-1-0321 conducted at FDU Full title:

Developing Hands-on Exercises for Secure Embedded System Design & Security Data Analytics for Computing and Engineering Students

- PI Kalyan Mondal, Ph.D.
- Secure Embedded Systems
 Co-Pl Ravi Rao, Ph.D.
- 2. Advanced Systems Programming Co-PI William Phillips, Ph.D.
- 3. Big Data Analytics & Cybersecurity Co-Pl Alex Rudniy, Ph.D.
 - Graduate assistant Pooja Surapaneni, Fall 2017
 - Graduate assistant Suhag Raval, Spring 2018

Project Goals and Status

Task	Status
1. Integrate Apache Metron	
2. Integrate Apache Spot	Pending
3. Add more nodes to the cluster	
4. Load sybersecurity datasets into a	
big data warehouse	
5.1 Design lab assignments	
5.2 Use lab assignments in the	
Cybersecurity course	
6.1. Setup a cluster in a public cloud	$\overline{\checkmark}$
6.2. Design and evaluate labs	In progress
6.3. Prepare documentation	In progress
7. Dissemination	In progress

Note: Multiple additional unplanned tasks completed.

Apache Hadoop

- Open-source big data ecosystem allowing:
 - Distributed processing of large datasets
 - Cluster scalability from one node to thousands
 - Supports data redundancy
 - Works on premises
 - Physical vs. virtual environments, e.g. VMware
 - Works in the cloud, e.g. AWS or MS Azure
- Hadoop distributions are available from several vendors, e.g. Hortonworks, Cloudera, etc.
 - Comes with a variety of applications: YARN,
 Ambari, Hive, Spark, Storm, Hbase, Kafka, Oozie...
 - + Metron + Spot

Hadoop at FDU

- A five-node hardware cluster is up since Fall 2015
 - Performed maintenance, tune ups, user management, etc.
 - Acquired skills necessary for the current project
 - Taught students new technologies, students got jobs
- A five-node VMware cluster added in Fall 2017
- Used in a big data class for hands-on assignments
- Taught MapReduce paradigm, HDFS, Ambari, Hive, Pig, Hbase, Spark, etc.

Possibilities for academic institutions:

- Cloudera Academic Partnership (free)
- Hortonworks Academic Program (free)

Part 2 Apache Metron

Apache Metron Evolution

- Metron evolved from OpenSOC
 - = Open Security Operations Center
 - = big data security analytics framework for consumption and monitoring **network traffic** and **machine exhaust data** (log files) of a data center.
 - Works on the Hadoop platform
 - Uses Kafka, Storm, and Elasticsearch
 - Supported features:
 - Unstructured data and streaming data ingestion
 - Interactive query, real-time search, scalable compute
 - Real-time alerts, anomaly detection, data correlation
 - Rules and reports, predictive modeling via UI and applications

Apache Metron Evolution

September 2013	Sep	otem	ber	20	13
----------------	-----	------	-----	----	----

OpenSOC First Prototype

December 2013

Hortonworks joins the OpenSOC project

2014-April 2015 OpenSOC platform development finished, first beta test conducted at a customer site

June 2015

• OpenSOC became a community edition

July 2015

Cisco stops support for OpenSOC

October 2015

 James Sirota, Cisco Chief Data Scientist and Lead of OpenSOC joins Hortonworks

December 2015

Metron accepted into Apache Incubator

April 2016

First release of Metron 0.1

April 2017

Metron graduated Apache Incubator

2018

Metron's latest version: 0.4.3

Apache Metron

- is a cyber security application framework
 - that allows to ingest, process and store diverse security data feeds at scale
 - to detect cyber anomalies and enable a rapid response.
- Has four key features:
 - 1. Security Data Lake / Data Vault
 - Cost effectively stores enriched telemetry data
 - 2. Pluggable Framework
 - Supports pcap, netflow, bro, snort, fireye, sourcefire, ...
 - 3. Security Application
 - Has standard security information and event management (SIEM) capabilities
 - 4. Threat Intelligence Platform
 - Contains anomaly detection and machine learning algorithms for realtime data

Metron Functional Themes

Platform

 Hardened platform for performance, scale, extensibility and maintainability, provisioning, managing and monitoring Metron

Data Collection

Metron can stream, ingest and parse into the platform (e.g. using Kafka, etc.)

Data Processing

 Storm topologies allow real-time processing, such as normalization of telemetry data, enrichment, cross reference with threat intel feeds, alerting, indexing, and storing data

User Interface

• Portal, dashboard and user interfaces for different personas

Another look at Metron

- Metron is a centralized tool for security monitoring and analysis.
- Metron integrates several open source big data technologies
 - Kafka, Storm, Kibana, Elasticsearch, and others.
- Metron is capable of:
 - log aggregation, full packet capture indexing, storage, advanced behavioral analytics and data enrichment
- Metron applies threat intelligence information to security telemetry

Metron has ... (1)

- A mechanism to capture, store, and normalize any type of security telemetry at extremely high rates.
- Security telemetry is constantly being generated
- It should be ingested at high speeds and pushed to appropriate processing units for advanced computation and analytics

Metron has ... (2)

- Real time processing and application of enrichments
- For example, adding threat intelligence, geolocation, and DNS information to telemetry being collected.
- Near real-time application of this information to incoming telemetry provides the context and situational awareness,
 - as well as the who and where information critical for investigation

Metron has ... (3)

- Efficient information storage
 - Logs and telemetry are stored such that they can be efficiently mined and analyzed
 - Due to the ability to extract and reconstruct full packets, an analyst can answer questions such as who the true attacker was, what data leaked, and where
 - Long-term storage also enables advanced analytics
 - Apply machine learning techniques to build models
 - Incoming data can then be scored against stored models for advanced anomaly detection.

Metron has ... (4)

- An interface for centralized view of data and alerts passed through the system.
- Metron's interface contains alert summaries
 with threat intelligence and enrichment data
 for that alert on a single page.
- Advanced search and full packet extraction are available in the same interface.

Metron Architecture (1)

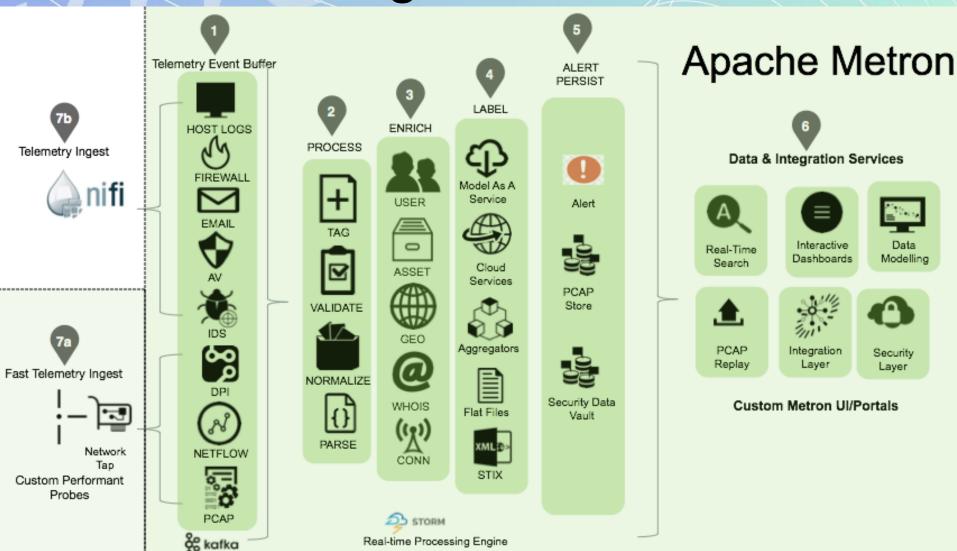
- Parsers: Parsing data from Kafka
- Enrichment: Enriching data after parsing, capability to tag a message as an alert, and assign a risk triage level via a custom rule language.
- Indexing: with Elasticsearch or Solr into HDFS

Metron Architecture (2)

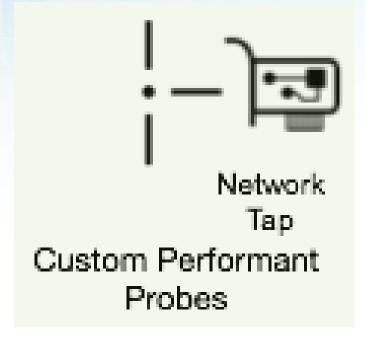
- Stellar: A custom data transformation language used for simple field transformation, expressing triage rules, etc.
- Model as a Service: YARN application which can deploy machine learning / statistical models into a Hadoop cluster
- Data management: saves data in HBase for further use.
- Profiler: A feature extraction that can generate a profile describing the behavior of an entity (a server, user, subnet or application).

Apache Metron Deployment

- Several deployment scenarios
 - Vagrant-based install
 - Amazon Web Services using EC2 instances
 - Manual install on CentOS 6
 - Ambari Management Pack
 - Ansible-Docker container
 - RPM-Docker
 - RPM packages
 - DEB packages
 - Packer and Virtualbox
 - Single virtual machine


Metron Deployment (more)

- Metron with Kibana and Elasticsearch are included into Hortonworks Cybersecurity Platform
 - Which is and add-on to Hortonworks Data Platform
 - Current versions HDP 2.4.6 & HCP 1.4.1
 - Metron is tested by developers to work with HDP 2.4.5
- HDP & HCP is the best solution for students
 - Due to Ambari graphical user interface
- HCP 1.4.1 does not include the latest Metron
- We built Ambari management pack with the latest Metron
 - Ambari Mpack with Metron, Kibana & Elasticsearch is an analogy to HCP
 - We followed instructions posted in Metron documentation


Metron Logical Architecture

Steps 1 to 5: ingest, parse, normalize, enrich, label, index and store all security telemetry data from diverse data sources in an enterprise security data vault.

Metron Step A: Fast Telemetry Ingest

- Data input for high volume network telemetry
 - Packet capture PCAP
 - Netflow / YAF
 - Bro/DPI
 - Custom Metron probes ingesting from network tap

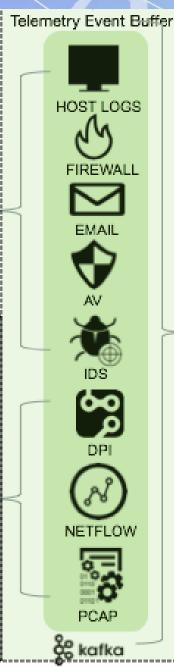
Metron Step A: Fast Telemetry Ingest

Example of raw Bro event captured by Bro probe

```
"http": {
  "id.orig_p": 49206,
  "status_code": 200,
  "method": "GET",
  "request_body_len": 0,
 "id.resp_p": 80,
  "uri": "\/img\/style.css",
  "tags": [],
  "uid": "CqNi7P3HekrXW10Zh8",
  "referrer": "http:\/\/7ognsnzwwnm6zb7y.gigapaysun.com\/11iQmfg",
  "resp mime types": [
    "text\/plain"
  "trans_depth": 1,
  "host": "7oqnsnzwwnm6zb7y.gigapaysun.com",
  "status_msg": "OK",
  "id.orig_h": "192.168.138.158",
  "response body len": 4492,
  "user_agent": "Mozilla\/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; ...",
  "ts": 1.459533852098545E9,
  "id.resp_h": "95.163.121.204",
  "resp_fuids": [
    "FyAcd62K4Ui32inIc9"
```

Metron Step B: Telemetry Ingest

- Metron uses Apache NiFi to ingest data from most telemetry data sources:
 - File
 - Syslog
 - REST
 - HTTP
 - Custom API, etc.
- An example would be capturing data from a FireEye appliance with <u>Nifi's SysLog Processor</u>. The raw Fireye event captured would look something like the following:


Metron Step B: Telemetry Ingest

- Example: capturing data from a FireEye appliance with NiFi SysLog Processor
- Raw captured FireEye event:

```
<164>Mar 19 05: 24: 39 10,220,15,15
fenotify-851983.alert: CEF:0|FireEye|CMS|7.2.1.244420|DM|domain-match|1|rt=Feb 09 2015 12: 28:
dvc=10,201,78,57
cn3Label=cncPort
cn3=53
cn2Label=sid
cn2=80494706
shost=dev001srv02.example.com
proto=udp
cs5Label=cncHost
cs5=mfdclk001.org
dvchost=DEVFEYE1
spt=54527
dvc=10, 100, 25, 16
smac=00: 00: 0c: 07:ac: 00
cn1Label=vlan
cn1=0
externalId=851983
cs4Label=link
cs4=https://DEVCMS01.example.com/event_stream/events_for_bot?ev_id\\=851983_dmac=00:1d:a2:af:3
cs1Label=sname
cs1=Trojan.Generic.DNS
```

Metron Step 1: Telemetry Event Buffer

- Raw events from telemetry security data sources
- Will be captured by Apache Nifi or custom Metron probe
- Then pushed into each own Kafka topic
- The arrival into the ingest buffer becomes the beginning of Metron processing

Metron Step 2: Process

VALIDATE

- Parse, Normalize, Validate and Tag
- Each raw event will be parsed and normalized into a standardized flat JSON format.
- Every event will be standardized into at least a 7-tuple JSON structure.
- This enables the topology correlation engine to work with messages from different topologies using fields such as:
 - ip_src_addr: layer 3 source IP
 - ip_dst_addr: layer 3 dest IP
 - ip_src_port: layer 4 source port
 - ip_dst_port: layer 4 dest port
 - protocol: layer 4 protocol
 - timestamp (epoch)
 - original_string: A human friendly string representation of the message
- This step allows validation of a raw event and tagging it with additional metadata, which will be used by downstream processing.

Metron Step 2: Process Example


NORMALIZE

```
PARSE
```

```
"timestamp": 1459533852098,
"protocol": "http",
"ip src addr": "192.168.138.158",
'ip_src_port": 49206,
"ip_dst_addr": "95.163.121.204",
"ip_dst_port": 80,
"original_string": "HTTP | id.orig_p:49206 status_code:200 method:GET request_bd
"bro timestamp": "1.459533852098545E9",
"status_code": 200,
                                             Stadard 7 tuple that every
"method": "GET",
                                             element will have
"request_body_len": 0,
"uri": "\/img\/style.css",
"tags": [].
"uid": "CqNi7P3HekrXW10Zh8",
"referrer": "http:\/\/7ognsnzwwnm6zb7y.gigapaysun.com\/11i0mfg",
"resp_mime_types": [
  "text\/plain"
"trans_depth": 1,
"protocol": "http",
"host": "7ognsnzwwnm6zb7y.gigapaysun.com",
"status_msg": "OK",
"response_body_len": 4492,
"user_agent": "Mozilla\/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; ...",
"resp fuids": [
  "FvAcd62K4Ui32inIc9"
```


Metron Step 3: Enrich

Example

- An external IP address is enriched with GeoIP information
 - lat/long coordinates & City/State/Country
- or HOST enrichment where an IP gets enriched with Host details
 - IP corresponds to Host X which is part of a web server farm for an e-commerce application

Metron Step 3: Enrich


```
ENRICH
USER
ASSET
```



```
"timestamp": 1459533852098,
                                        Geo enrichment for
"protocol": "http",
                                        destination and source IPs
"ip_src_addr": "192.168.138.158",
"ip_src_port": 49206,
"ip_dst_addr": "95.163.121.204",
"ip dst port": 80,
"original_string": "HTTP | id.orig_p:49206 status_c
"enrichments.geo.dip.location_point": "41.789029, -88.1333654"
"enrichments.geo.dip.latitude": "41.789029",
"enrichments.geo.dip.longitude": "-88.1333654",
"enrichments.geo.dip.country": "US",
"enrichments.geo.dip.city": "Naperville",
"enrichments.geo.dip.postalCode": "60563",
"enrichments.geo.sip.location_point": "38.635952, -90.223868",
"enrichments.geo.sip.latitude": "38.635952",
"enrichments.geo.sip.longitude": "-90.223868",
"enrichments.geo.sip.country": "US",
```

"bro_timestamp": "1.459533852098545E9", "status_code": 200, "method": "GET"

"enrichments.geo.sip.city": "St. Louis",

"enrichments.geo.sip.postalCode": "63103",

Metron Step 4: Label

- Labeling includes threat intel cross reference checks
 - elements of a telemetry are looked up against threat intel feed data sources like Soltra Edge, produced by Stix/Taxii feeds or other threat intel aggregators
 - These threat intel services will then label the telemetry event with threat intel metadata when a hit occurs.
- Also possible to apply analytical models for scoring to telemetry events that are flowing in

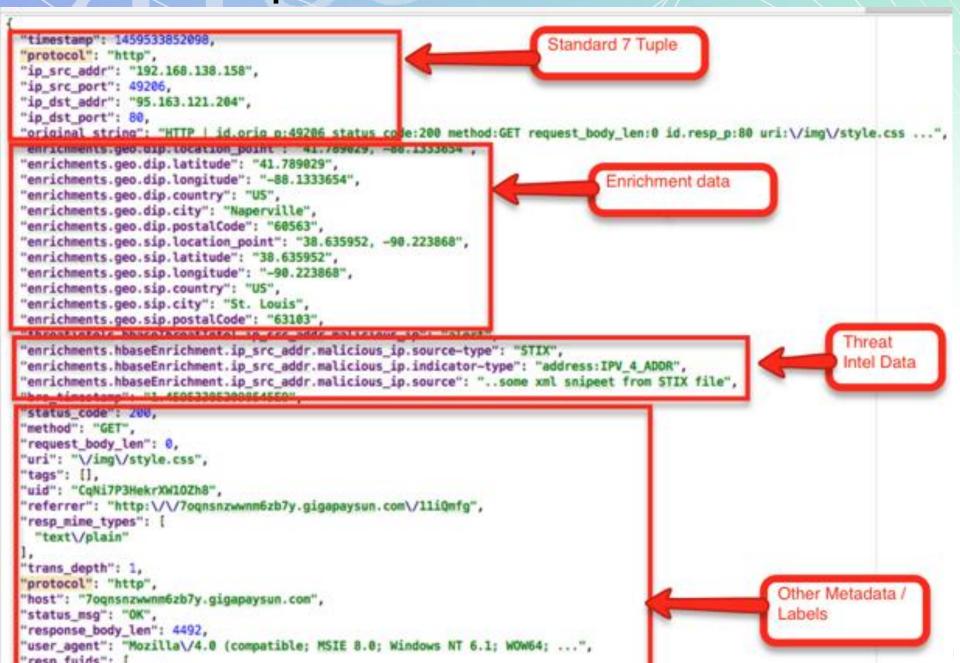
Example of a bro event producing a threat intel hit

"threatintels.hbaseThreatIntel.ip_src_addr.malicious_ip": "alert", "enrichments.hbaseEnrichment.ip_src_addr.malicious_ip.sourcetype": "STIX",

"en richments.hbaseEn richment.ip_s rc_add r.malicious_ip.indicator-type": "add ress:IPV_4_ADDR", "enrichments.hbaseEnrichment.ip_src_addr.malicious_ip.source" : "some xml snipeet from STIX file"

Metron Step 5: Alert Persist

- Certain telemetry events can initiate alerts
 - Then indexed in an alert index store
- Triggering factors:
 - Event type: e.g. any event generated by Snort is an alert
 - Threat intel hit
- All enriched and labeled telemetry events
 - Indexed by Elasticsearch or Solr
 - Preserved in Hadoop HDFS
 - This forms an enterprise data vault

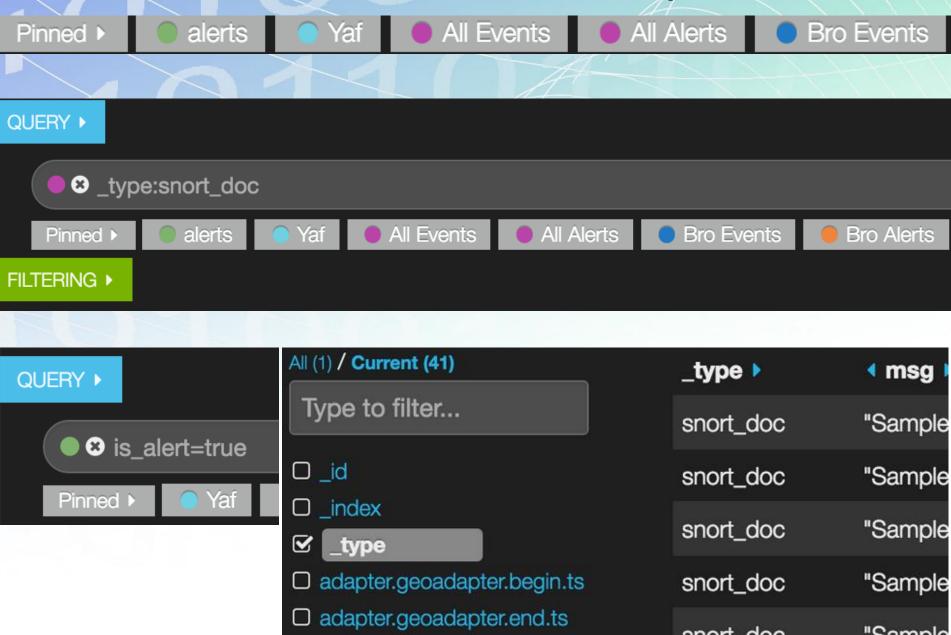


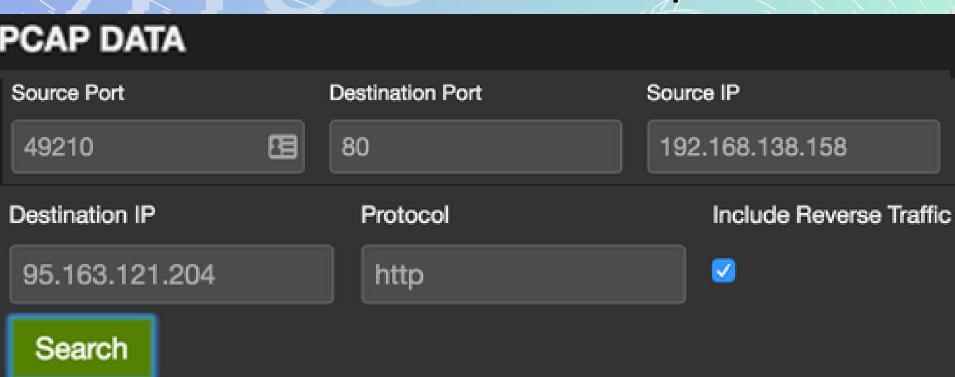
PCAP Store

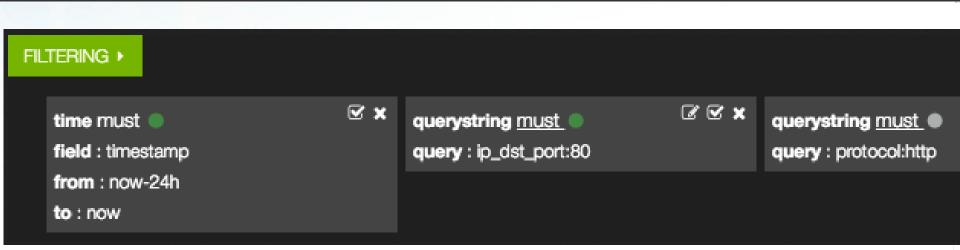
Metron Step 5: Event stored in HDFS

Metron Step 6: UI Portal & Data Integration

PCAP Replay




Metron platform provides with a set of services:


- Real-time Search and Interactive Dashboards / Portals
 - single interface for security operation analysts to view alerts and correlate to telemetry events that caused them.
- Data Modeling / Feature Engineering Services by tools such as Jupyter, IPython and Zeppelin.
- Integration and Extensibility Layers customization for own needs/requirements such as:
 - Ingesting new data sources
 - Adding new parsers
 - Adding new enrichment services
 - Adding new Threat Intel feeds
 - Building, deploying and executing new analytical models
 - Integration with enterprise workflow engines
 - Customizing the Security Dashboards and portals

Metron UI Portal Example 1

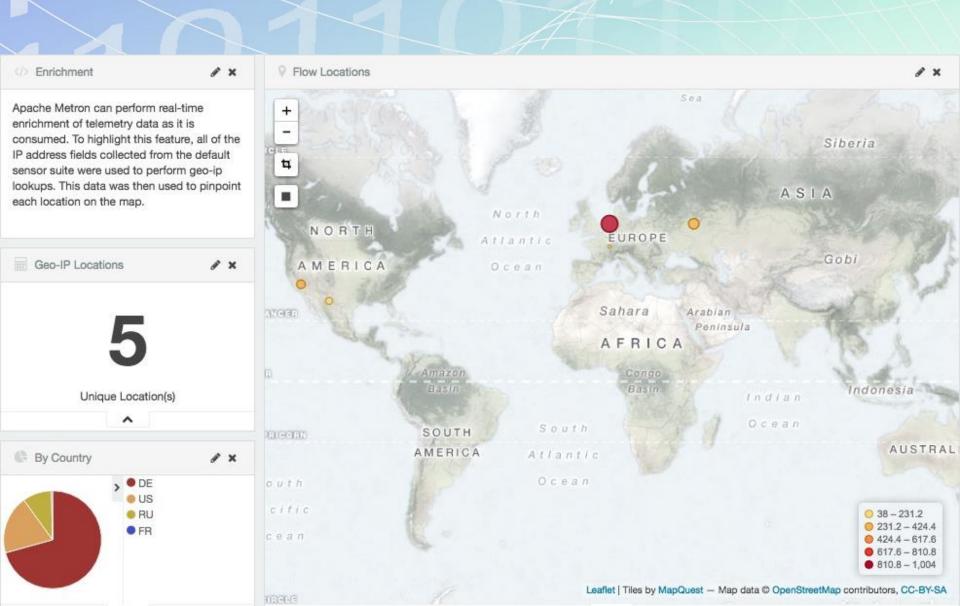
Metron UI Portal Example 2

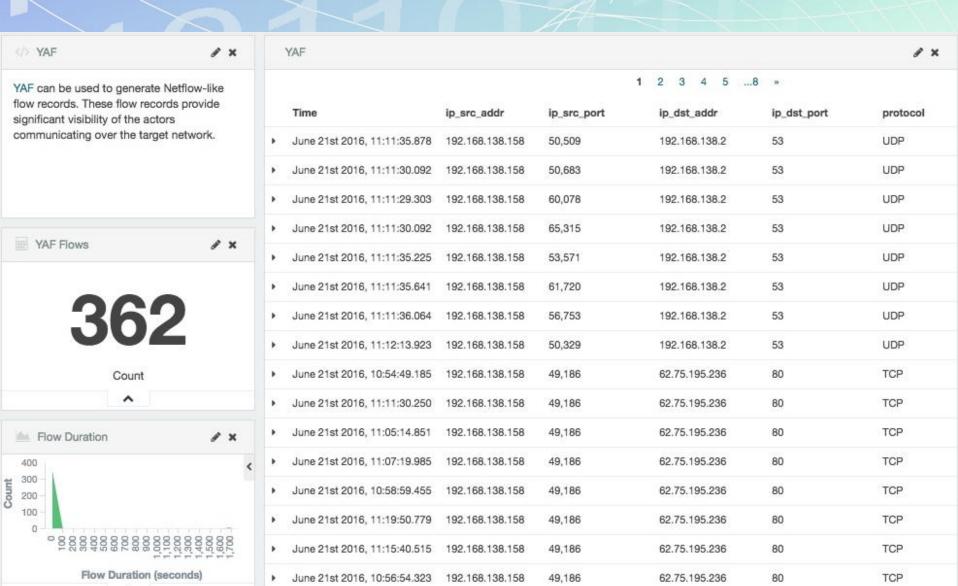
Metron UI Portal Example 3

04-10

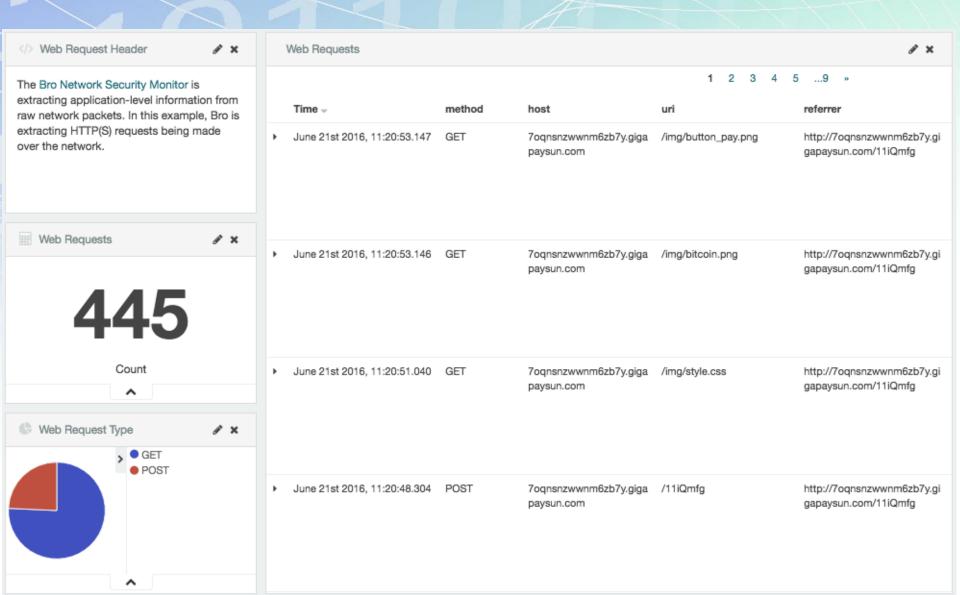
04-10

04-10


04-09


04-09

04-10


Metron UI Portal Example 4

			4		177
ALERTS					
0	0 to	10 of 1000 available	for paging		→
_type >	∢ msg ▶	dip_src_addr →	(ip_src_port)	fip_dst_addr →	dip_dst_
snort_doc	"Sample Metron Message from Snort"	192.168.138.158	49189	62.75.195.236	80
snort_doc	"Sample Metron Message from Snort"	192.168.138.158	49186	62.75.195.236	80
snort_doc	"Sample Metron Message from Snort"	192.168.138.158	49189	62.75.195.236	80
snort_doc	"Sample Metron Message from Snort"	192.168.138.158	49206	95.163.121.204	80
snort_doc	"Sample Metron Message from Snort"	192.168.138.158	49201	204.152.254.221	80
snort_doc	"Sample Metron Message from Snort"	192.168.138.158	49201	204.152.254.221	80
snort_doc	"Sample Metron Message from Snort"	192.168.138.158	49201	204.152.254.221	80
snort_doc	"Sample Metron Message from Snort"	192.168.138.158	49201	204.152.254.221	80
snort_doc	"Sample Metron Message from Snort"	192.168.138.158	49186	62.75.195.236	80
snort_doc	"Sample Metron Message from Snort" 0 to 10 of 1000 a	192.168.138.158 available for paging	49189 →	62.75.195.236	80

Snort	€ ×		Snort Alerts						e ×
Snort is a Network Intrusion Detection	on				1	2 3 4 5	10 »		
System (NIDS) that is being used to generate alerts identifying known bad events. Snort			Time 🔟	msg	sig_id	ip_src_addr	ip_src_port	ip_dst_addr	ip_ds
relies on a fixed set of rules that act signatures for identifying abnormal e		•	June 21st 2016, 11:21:44.769	"'snort test alert'"	999,158	95.163.121.204	80	192.168.138.158	49,20
_		•	June 21st 2016, 11:21:44.640	"'snort test alert'"	999,158	192.168.138.158	49,209	95.163.121.204	80
Snort Alert Types / 🗶 🗶		•	June 21st 2016, 11:21:44.552	"'snort test alert'"	999,158	192.168.138.158	49,189	62.75.195.236	80
4		•	June 21st 2016, 11:21:44.529	"'snort test alert'"	999,158	192.168.138.158	49,206	95.163.121.204	80
		•	June 21st 2016, 11:21:44.390	"'snort test alert'"	999,158	62.75.195.236	80	192.168.138.158	49,18
Alert Type(s)		•	June 21st 2016, 11:21:42.398	"'snort test alert'"	999,158	192.168.138.158	49,209	95.163.121.204	80
Top Alerts By Host	s ×	•	June 21st 2016, 11:21:42.277	"'snort test alert'"	999,158	95.163.121.204	80	192.168.138.158	49,20
Source Q Destination Q	Count \$	•	June 21st 2016, 11:21:41.086	"'snort test alert'"	999,158	72.34.49.86	80	192.168.138.158	49,20
62.75.195.236 192.168.138.158	2,201			aiort					
192.168.138.158 62.75.195.236	1,253	•	June 21st 2016, 11:21:41.061	"'snort test alert'"	999,158	192.168.138.158	49,202	72.34.49.86	80
192.168.138.158 95.163.121.204	321		June 21st 2016, 11:21:40.880	"'snort test			80	192.168.138.158	
192.168.138.158 72.34.49.86	284	•			999,158	72.34.49.86			49,20
^				alert'"					

Bro is extracting DNS requests and responses being made over the network. Understanding who is making those requests, the frequency, and types can provide a deep understanding of the actors present on the network.

/ X

/ X

DNS Requests

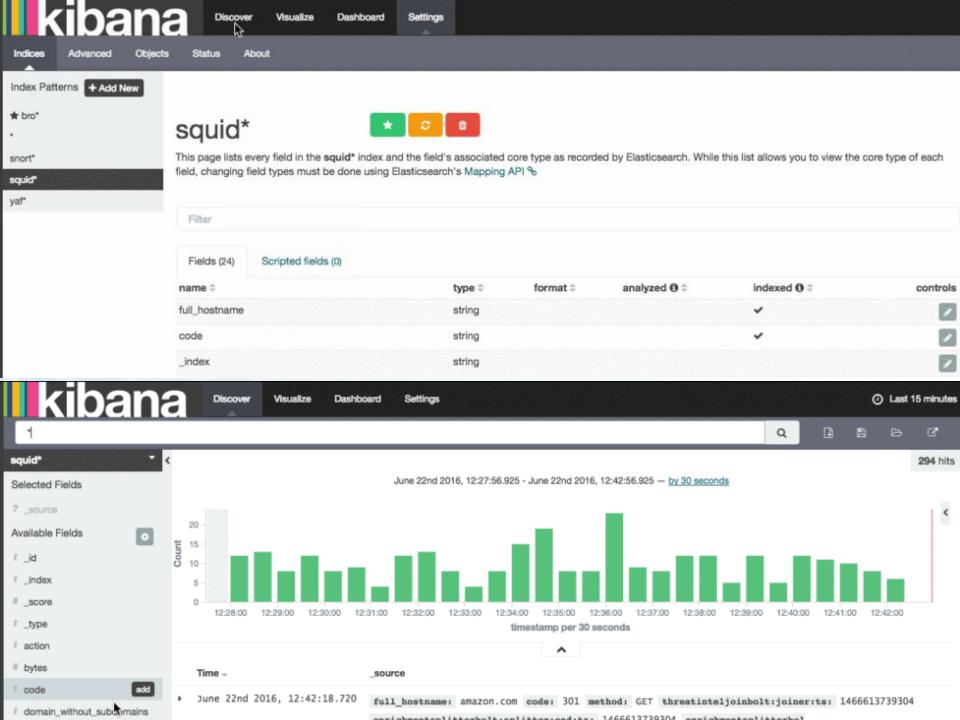
DNS Requests

	DNS Requests					/×
			1 2 »			
	Time 🔻	query	qtype_name	answers	ip_src_addr	ip_dst_add
•	June 21st 2016, 11:20:34.452	7oqnsnzwwnm6zb7y.giga paysun.com	A	95.163.121.204	192.168.138.158	192.168.13
٠	June 21st 2016, 11:19:56.592	comarksecurity.com	A	72.34.49.86	192.168.138.158	192.168.13
•	June 21st 2016, 11:19:56.407	kritischerkonsum.uni- koeln.de	A		192.168.138.158	192.168.13
٠	June 21st 2016, 11:19:56.169	runlove.us	Α	204.152.254.221	192.168.138.158	192.168.13
٠	June 21st 2016, 11:19:55.753	ip-addr.es	Α	188.165.164.184	192.168.138.158	192.168.13
•	June 21st 2016, 11:19:50.622	r03afd2.c3008e.xc07r. b0f.a39.h7f0fa5eu.vb8 fbl.e8mfzdgrf7g0.grou pprograms.in	A	62.75.195.236	192.168.138.158	192.168.13
•	June 21st 2016, 11:19:50.621	ubb67.3c147o.u806a4.w 07d919.o5f.f1.b80w.r0 faf9.e8mfzdgrf7g0.gro upprograms.in	A	62.75.195.236	192.168.138.158	192.168.13
•	June 21st 2016, 11:19:49.832	va872g.g90e1h.b8.642b 63u.j985a2.v33e.37.pa 269cc.e8mfzdgrf7g0.gr oupprograms.in	A	62.75.195.236	192.168.138.158	192.168.13

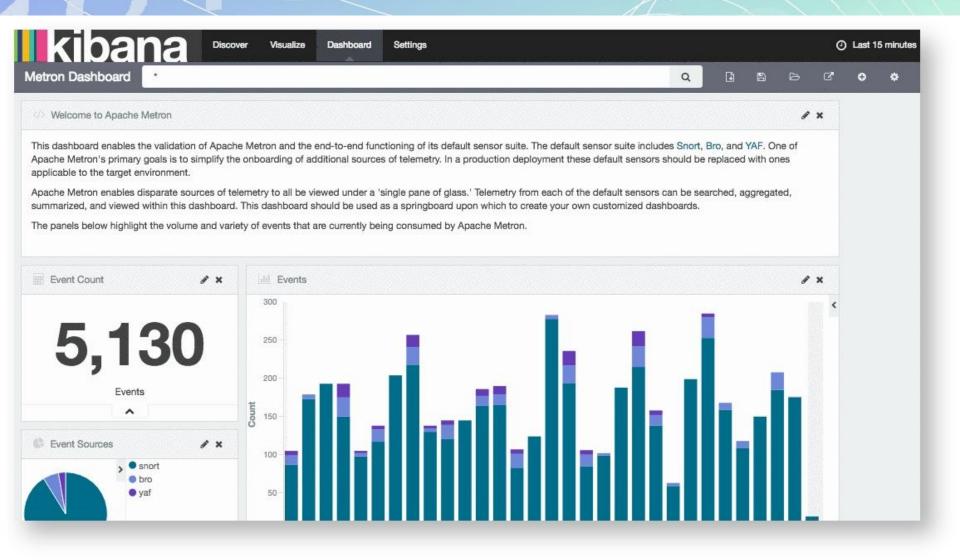
95.163.121.204

192.168.138.158

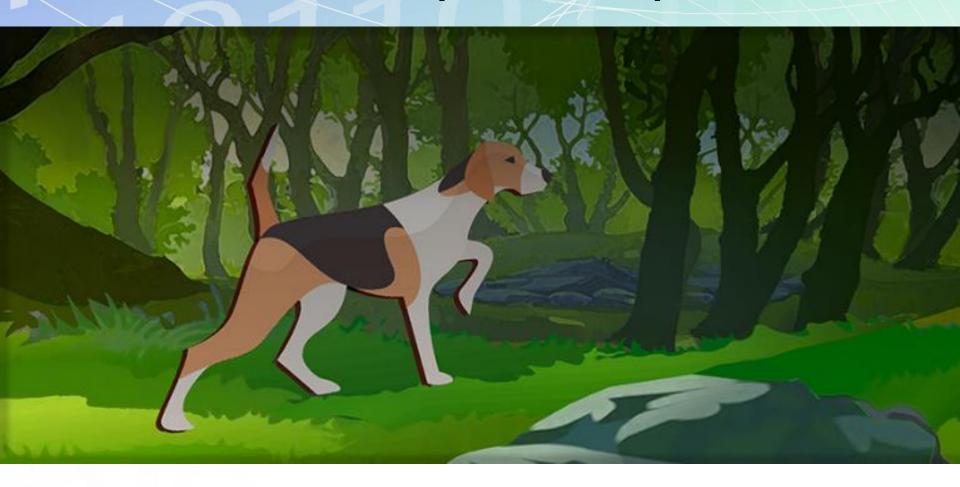
192,168,13


7oqnsnzwwnm6zb7y.giga A

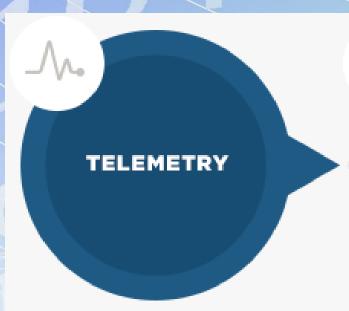
paysun.com


June 21st 2016, 11:18:29.320

Metron Users & Application


- SOC Analyst: Don't spend days looking at alerts created by rules when only a few alerts matter
- SOC Investigator: Metron enables massive amounts of data to identify and triage anomalies
- SOC Manager: Automatically create incidents/cases with integrated workflow systems
- Forensic Investigator: "Just-in-time evidence collection response" transforms data in real-time
- Security Platform Engineer: Single platform to manage and operate the ingestion, processing of cyber data
- Security Data Scientist: Perform data science activities: train, evaluate and score analytical models

Metron Dashboard in Kibana

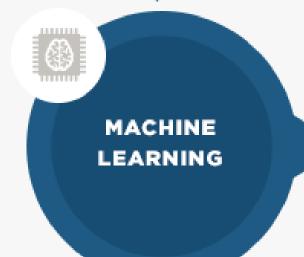


Part 3 Apache Spot

http://spot.incubator.apache.org

Apache Spot Architecture

- · Network Flows (nfcapd)
- DNS (PCAP)
- Proxy


- Filter billions of events to a few thousand
- Unsupervised learning

- Open source decoders
- Load data in Hadoop
 Data transformation

Visualization, attack heuristics noise filter

incubator Apache Spot

- Open-source software for analysis of telemetry data flow and packet analysis
- Provides with insight on networks
- Identifies potential security threats or happening attacks
- Accelerates exposing suspicious connections and previously unseen attacks
 - using flow and packet analysis technologies
- Status: development in Apache Incubator
 - Version 1.0 is the latest release (on August 7, 2017)
 - Newest under-development code is on GitHub

Apache Spot UI with sample data

- Running Demo on Docker
 - Install Docker for your platform
 - Run the container:
 - docker run -it -p 8889:8889 apachespot/spot-demo
- visit URL in your browser to get started:
- http://localhost:8889/files/ui/flow/suspicious.html#date=2016-07-08
- For the full instructions visit the spot on Docker hub
- https://hub.docker.com/r/apachespot/spot-demo/

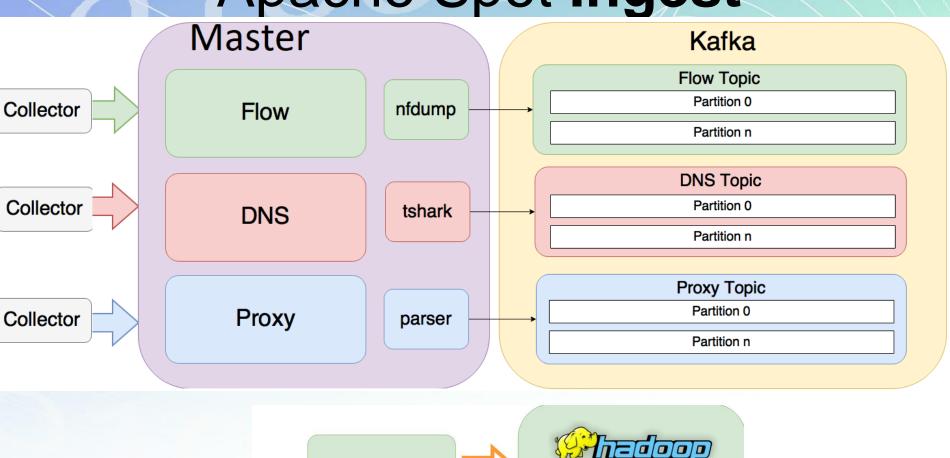
Apache Spot Modules

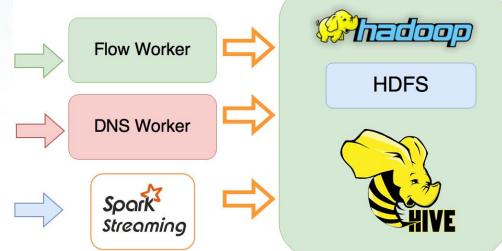
spot-ingest

 Ingest data is captured or transferred into the Hadoop cluster, where they are transformed and loaded into solution data stores.

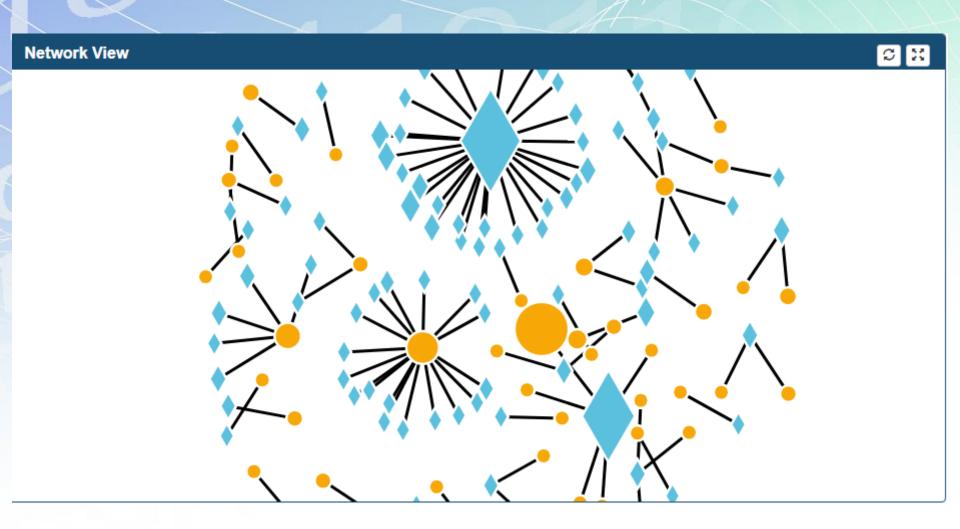
spot-ml

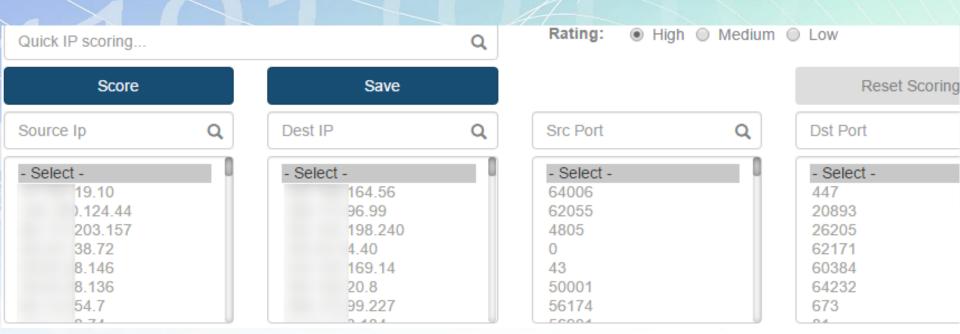
 contains routines for performing suspicious connections analyses on netflow, DNS or proxy data gathered from a network.

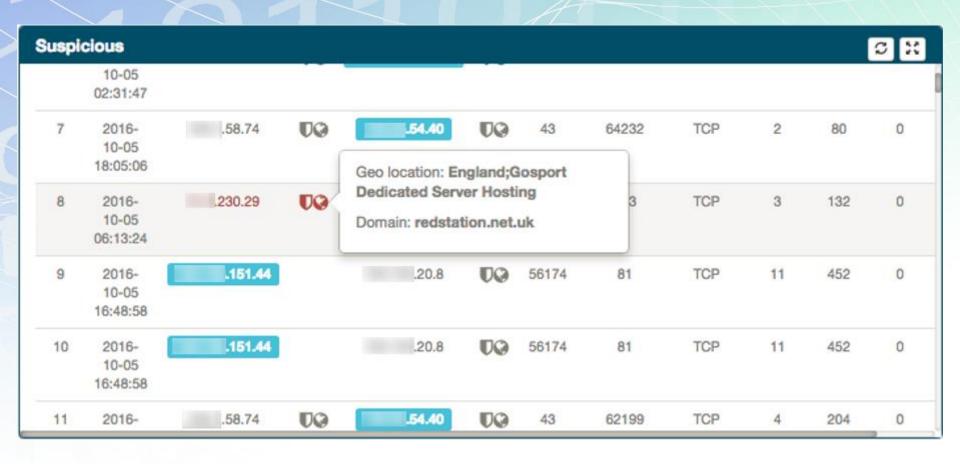

spot-oa

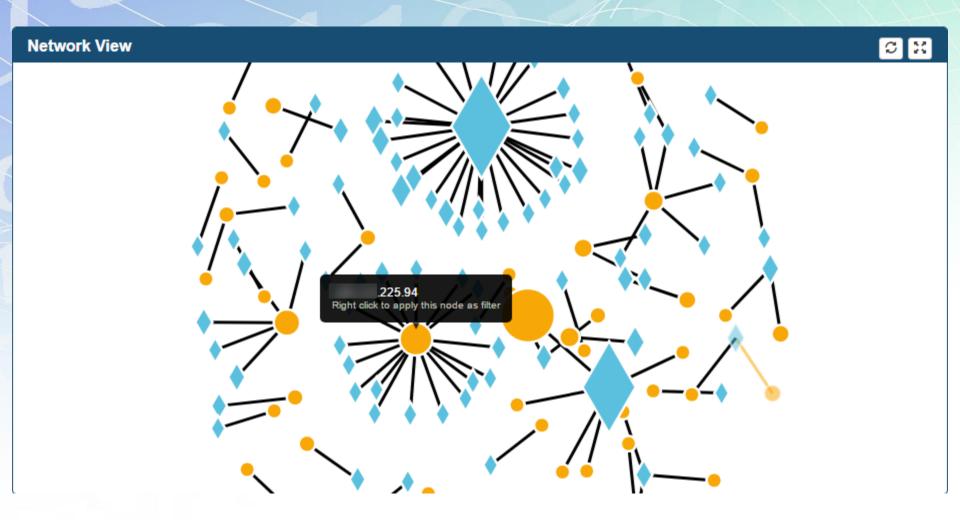

 Operational Analytics (OA) is a collection of modules, which includes both the data processing and transformation as well as the GUI module for data visualization.

spot-setup


 Technical aspects of the setup installation process of the Apache Spot solution.


Apache Spot Ingest


Suspi	cious											S X
Rank	Time	Source IP		Destination IP		Source Port	Destination Port	Protocol	Input Packets	Input Bytes	Output Packets	Output Bytes
0	2016-10- 05 15:33:33	.19.10	UQ	.164.56	UQ	64006	447	TCP	3	940	0	0
1	2016-10- 05 03:07:17	.124.44	UQ	.96.99	UQ	62055	447	TCP	2	597	0	0
2	2016-10- 05 05:38:21	.203.157	UQ	.164.56	UQ	4805	447	TCP	4	2136	0	0
3	2016-10- 05 02:22:11	.38.72	UQ	.198.240	UQ	0	20893	ICMP	1	139	0	0
4	2016-10- 05 14:26:52	59.63.28.146	UQ	192.102.198.240	UQ	0	26205	ICMP	1	156	0	0
5	2016-10-	28 136	ПО	.198.240	ПО	0	62171	ICMP	1	133	0	0



Suspi	cious									
5	2016-10- 05 15:45:30	.28.136	UQ	.198.240	UQ	0	62171	ICMP	1	133
6	2016-10- 05 02:31:47	.254.7	UQ	.198.240	UQ	0	60384	ICMP	1	150
7	2016-10- 05 18:05:06	.58.74	UQ	.54.40	UQ	43	64232	TCP	2	80
8	2016-10- 05 06:13:24	.230.29	UQ	.169.14	UQ	50001	673	Row Se	elected	132
9	2016-10- 05 16:48:58	.151.44		.20.8	UQ	56174	9:	TCP	11	452
10	2016-10- 05 16:48:58	.151.44		.20.8	UQ	56174	81	TCP	11	452

Susp	icious									
5	2016-10- 05 15:45:30	.28.136	UQ	.198.240	UQ	0	62171	ICMP	1	133
6	2016-10- 05 02:31:47	254.7	UQ	.198.240	UQ	0	60384	ICMP	1	150
7	2016-10- 05 18:05:06	.58.74	UQ	.54.40	UQ	43	64232	TCP	2	80
8	2016-10- 05 06:13:24	.230.29	UQ	.169.14	UQ	50001	673	Row Se	lected	132
9	2016-10- 05 16:48:58	.151.44		.20.8	UQ	56174	9;	TCP	11	452
10	2016-10- 05 16:48:58	.151.44		.20.8	UQ	56174	81	TCP	11	452

ıspi	cious										c :
	10-05 02:31:47										
7	2016- 10-05	.58.74	U@	.54.40	TQ	43	64232	TCP	2	80	0
8	2016- 10-05 06:13:24	.230.29	TQ	Geo location: En Dedicated Serv Domain: redsta	ver Host	ing	3	TCP	3	132	0
9	2016- 10-05 16:48:58	.151.44		.20.8	UQ.	56174	81	TCP	11	452	0
10	2016- 10-05 16:48:58	.151.44		.20.8	DQ	56174	81	TCP	11	452	0
11	2016-	.58.74	UQ	.54.40	UQ	43	62199	TCP	4	204	0

References

- http://spot.incubator.apache.org
- http://opensoc.github.io
- https://community.hortonworks.com/articles/268
 12/metron-ui-finding-a-needle-in-a-haystack.html
- https://metron.apache.org/
- https://github.com/apache/metron
- https://github.com/apache/incubator-spot